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Abstract A constitutive equation based on the gen-

eralized concept of thermally activated flow units is

developed to describe the stress–strain behavior of

polymers as a function of temperature, strain-rate, and

superposed hydrostatic pressure under conditions in

which creep and long-term relaxation effects are neg-

ligible. The equation is shown to describe the principal

features of the dynamic stress–strain behavior of

polytetrafluoroethylene and, also, the yield stress of

polymethylmethacrylate as a function of temperature

and strain rate. A key feature of the model, not utilized

in previous constitutive equation descriptions, is an

inverse shear stress dependence of the shear activation

volume. In contrast to metal deformation behavior, an

enhanced strain hardening with increasing strain at

higher strain rates and pressures is accounted for by an

additional rate for immobilization of flow units. The

influence of hydrostatic pressure enters through a

pressure activation volume and also through the flow

unit immobilization term. The thermal activation

model is combined with a temperature dependent

Maxwell–Weichert linear viscoelastic model that

describes the initial small strain part of the stress strain

curve.

Introduction

Thermal activation

Following pioneering work by Eyring [1, 2], an Arrhe-

nius form of thermally activated constitutive equation

for the temperature and strain rate dependence of flow

stress has been well established for a wide variety of solid

materials over appropriate temperature and strain rate

regimes. For metals, the modeled constitutive equation

parameters for different situations have been quantita-

tively matched with a variety of dislocation mechanisms.

Implicit in the general thermal activation model

description, however, is the consideration only that

permanent deformation occurs inhomogeneously under

an applied shear stress through the movement of indi-

vidual flow units, that is, structures in a material

responsible for initiating shear flows, by surmounting

local obstacles (potential barriers) to displacement.

In Fig. 1 is displayed a so-called master curve

reported by Bauwens-Crowet [3], and importantly dis-

cussed [4, 5], for the compressive yield stress depen-

dence on strain rate of polymethylmethacrylate

(PMMA) as derived from tests conducted over a range

of temperatures and strain rates. Of particular impor-

tance in Fig. 1 is the dependence of the flow stress r on

strain rate _e; at constant temperature T, which deter-

mines the activation volume, V, for the thermally acti-

vated flow process through the relation

@r
@ ln _e

� �
T

¼ kT

V
ð1Þ

where k is Boltzmann’s constant. In Fig. 1, a curve

drawn based on the assumption that V is inversely
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proportional to the thermal component of stress shows

good agreement with the set of master points except at

the highest strain rates. The demonstrated agreement

can be considerably improved as we will see later.

For metals, the shear activation volume is specified as

the product of an activation area and, within the areal

plane, a dislocation Burgers vector that quantifies the

characteristic flow unit displacement. Armstrong [6]

showed that the activation volume followed an inverse

dependence on the thermal component of stress for a

wide variety of metal crystals and polycrystals whose

deformation properties were proposed to be controlled

by quite different dislocation mechanisms. Also, the

inverse dependence on thermal stress was pointed out to

be a good approximation to quantitative theoretical

model results for two quite different thermally activated

dislocation mechanisms [7]. Thus, the reciprocal acti-

vation volume dependence on thermal component of

stress in the metal case was shown to have a more general

applicability than being restricted to a particular dislo-

cation mechanism; and, Fig. 1 for a supposedly structure

less polymer, gives indication of applicability of the

dependence to a wider class of materials. To some

extent, the present consideration is separate from the

pioneering researches that have been done, only with

partial success, thus far, to identify the polymer flow unit

analogs of crystal dislocations [8–10], say, as compared

to the properties of long chained molecules [11, 12].

Complexities of solid polymeric materials

The agreement between the model calculation and the

summary of experimental results in Fig. 1 is achieved

without requirement of the next step complication of

more fully characterizing the flow unit characteristics for

the viscoelastic/plastic behavior of polymeric materials.

Other researchers have pursued the physical character-

izations of such activation volume measurements [13]

while the message here, in any case, is that Eyring’s

thermal activation model is applicable to polymers in the

presently described manner, in agreement with other

results reported earlier in several investigations [14, 15].

Part of the complication of accounting for the defor-

mation behavior stems from the great range of internal

structures that may be achieved in bulk polymeric

materials. Polymers may exist in perfect crystal form, in

an amorphous or glassy state, or some mixture of

amorphous and crystalline material. The constitutive

relation is affected by many factors including the degree

of crystallinity, microcrystal sizes, characteristics of the

amorphous material encasing crystal subunits, molecu-

lar chain characteristics, molecular weight distribution,

internal porosity, and presence of water or plasticizer.

The yield and flow stress of polymers is strongly pressure

dependent as well as temperature and strain rate

dependent. Unlike metals, which exhibit low tempera-

ture plastic flow only in shear, polymers may have a

significant unrecoverable strain component in hydro-

static compression. Compared to metals, polymers

undergo relatively large elastic strains with strong strain

rate, temperature, and pressure dependence of the

elastic modulus. And often there exists limited experi-

mental data due to a host of mechanical testing diffi-

culties.

Other factors which ultimately must be addressed

are the frequent occurrence of a ductile–brittle transi-

tion in polymers which becomes important at high

strain rates, the brittleness which is associated with

pressure effects, and the fracturing behavior associated

with cracks, pores and inclusions.

Proposed model addresses strain rate, temperature,

and pressure dependence

To reduce the complexity of the problem, we develop an

equation which addresses only the temperature, strain-

rate, and pressure dependence of the stress–strain rela-

tion. The small plastic component of strain in hydrostatic

compression is not addressed, nor are such factors as

brittleness and fracturing associated with strain-rate,

temperature, and pressure effects. It is assumed that the

strain-rates and temperatures are in the range in which

creep and long-term relaxation effects are negligible.

The model is three dimensional but isotropic. The

extension to three dimensional non-isotropic conditions

is left for future work.

The total strain is divided into a viscoplastic part

and a viscoelastic part, the viscoplastic part being
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Fig. 1 Thermal activation model with activation volume pro-
portional to inverse of thermal stress compared to master curve
points for PMMA reported by Bauwens-Crowet [3]
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described by a non-linear thermal activation dashpot

analogous to that described by Eyring [2], and the

viscoelastic part being described in terms of a Max-

well–Weichert linear viscoelasticity [16]. As will be

seen, the Maxwell–Weichert model description of

springs and dashpots is shown to produce reasonable

agreement with storage shear modulus, logarithmic

decrement, and relaxation moduli measurements. The

aim, eventually, of such modeling effort is to connect

with actual frequency-dependent relaxation processes

in the material [17].

Combined elasticity, viscoelasticity,

and viscoplasticity

A number of ways have been proposed to treat

combined elasticity, viscoelasticity, and viscoplasticity.

Linear or non-linear viscoelastic models without a

definitive yield surface in which elastic and plastic

strain coexist always have been described by a num-

ber of workers, including Johnston and Gilman [18]

and Krausz and Eyring [19]. Viscoelastic models with

a plastic flow surface were discussed by Perzyna [20].

A nice summary with references to relevant literature

may be found in the article of Bardenhagen et al.

[21]. We choose here to combine linear viscoelasticity

to describe the initial small strain behavior with a

viscoplastic model without a definite yield surface for

the large strain behavior. Experimental evidence

indicates that most, if not all, of the so-called plastic

deformation is recoverable, given enough time or high

enough temperature. This recovery is not treated in

this work.

Applications to polytetrafluoroethylene

and polymethylmethacrylate

The equations are shown to describe the major features

of the reported stress–strain curves of semi-crystalline

polytetrafluoroethylene (PTFE) as functions of tem-

perature, pressure, and strain rate. The PTFE is

assumed to have a density of 2.15 g cm–3 which would

fix the degree of crystallinity in the range of 55–60%,

depending on the concentration of microvoids.

PTFE is a good candidate for constructing a constit-

utive relation because it does not exhibit the necking

instability in tension unlike many other polymers. Thus

reported nominal load versus elongation tensile data

may be accurately transformed to true stress–true strain

data required for model development. However, it is a

fairly complex material with a number of amorphous

and polymorphic transitions. It also exhibits significant

non-linear viscoelastic behavior [22] down to small

strains of the order of 1%.

The yield stress of glassy PMMA can also be de-

scribed quite well as a function of temperature and strain

rate, provided the dependence of the yield stress upon

the elastic shear modulus is taken into account. In

addition, the resulting model allows some quantitative

statements to be made concerning the ductile–brittle

transition in PMMA.

Modeling pressure dependence

A number of empirical methods have been used to

model the pressure dependence of the yield stress [23,

24] as well as more fundamental methods based on

thermally activated flow [25, 26].

Among the empirical methods are included, for

example, models with pressure dependent yield surfaces

defined either by the Mohr–Coulomb yield condition

s�mp6 s0 ð2Þ

where s is the shear stress, p is the pressure, m and s0

are constants, or by a yield criterion in which the first

or second power of the Mises effective stress is

expanded in a power series in the pressure [27, 28]

ðJ02 Þ
n ¼ a0þ a1 J1þ a2 J

2
1 þ � � � ð3Þ

where J1 ( = –3 times the pressure) is the trace of the

stress tensor and J20 (proportional to the square of the

Mises stress) is the second invariant of the trace free

part of the stress tensor, and n, typically, is 1 or 1/2.

Such criteria are difficult to apply in modeling the

stress–strain relation for polymers because the char-

acteristic shape of the curves changes with pressure.

In this work, the viscoplastic flow stress is described

by a pressure, temperature, strain-rate, and strain

dependent relation between effective stress and effec-

tive strain

r �
ffiffiffiffiffiffiffiffi
3 J02

q
¼ f ðe; _e;T; pÞ ð4Þ

where the form of the pressure dependence is inferred

from thermal activation considerations.

Polymer constitutive equation: viscoplastic component

Eyring’s thermal activation theory

The basis of the thermal activation model is the theory

of Eyring [1, 2] describing the rate of any process in
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which matter rearranges by surmounting a potential

energy barrier. When the potential barrier is suffi-

ciently high, the rate in the forward direction exceeds

the reverse reaction rate significantly and the plastic

strain rate is given by the expression [29]

_e ¼ _e0e�G=kT ð5Þ

where G is the activation energy for the reaction, k is

Boltzmann’s constant, and T is the absolute

temperature. G may be identified with the Gibbs free

energy, so we may write

dG ¼ �SdT � Vijdrij ð6Þ

so that at constant temperature

G ¼ G0 �
Z

Vijdrij ð7Þ

where rij is the Cauchy stress tensor and the so called

volumes of activation Vij are functions of rij and T. The

repeated indices signify summation over the range of

the indices. Stress is considered positive in tension.

For isotropic materials, there are only three inde-

pendent components of stress so

Vijdrij ¼ Vrdrþ V3dJ03 � Vpdp ð8Þ

where the effective stress r �
ffiffiffiffiffiffiffiffi
3J20
p

; the pressure

p ¼ � 1
3 rkk; and J02 and J03 are the second and third

invariants, respectively, of the trace free stress tensor.

With the assumption that V3 is zero,

G ¼ G0 �
Z

Vrdrþ
Z

Vkkdp: ð9Þ

Further, we assume that Vr is a function of effective

stress and pressure and Vkk is a function only of

pressure. Equation 5 may now be written
Z

Vrdr ¼
Z

VkkdpþG0 þ kT lnð_e=_e0Þ: ð10Þ

Note that the effective stress activation volume

previously defined by Eq. 1 follows directly from

Eq. 10. Assuming that the effective stress activation

volume depends inversely on the effective stress,

choosing

Vr ¼
W0ðpÞ

r
ð11Þ

where W0 is some function of pressure, and solving for

the effective stress, Eq. 10 becomes

r ¼ BðpÞe�bðp;_eÞT ð12Þ

where

BðpÞ ¼ r0 exp
G0 þ

R
Vkkdp

W0ðpÞ

� �
ð13Þ

and

bðp; _eÞ ¼ k

W0ðpÞ
lnð_e0=_eÞ: ð14Þ

Viscoplastic stress–strain behavior of polymers

In order to describe the viscoplastic stress–strain

behavior of polymers, two thermally activated pro-

cesses are considered, one associated with the initial

yield behavior, the other associated with the sub-

sequent strain hardening behavior. Thus the total flow

stress is written

r ¼ BðpÞe�bðp;_eÞT þ r̂ðe; pÞe�aðp;_eÞT ð15Þ

where two terms of the form of Eq. 12 have been in-

cluded. The presence of two separate deformation

mechanisms was suggested in a differential scanning

calorimetry study of glassy polymers by Hasan and

Boyce [30]. Two distinct exotherms were found, one, at

temperatures below the glass transition temperature,

associated with the initial yield and strain softening

behavior, the other, at temperatures above the glass

transition temperature, associated with the strain

hardening behavior.

The fit of master curve data for the yielding of

PMMA shown in Fig. 1 was obtained from the first

term in Eq. 15.

Strain hardening in polymers

Relative to the earlier discussion given in the Intro-

duction, a number of shear-connected processes may

play a role in the deformation of any given polymer:

chain slippage, kinking and un-kinking of chains and

related chain segment rotation, chain entanglement,

chain scission, and cross-linking [8–12]. One or more of

these processes will be important for a given polymer

in a certain regime of temperature, strain-rate, and

pressure. Whatever the processes, we adopt an

extremely simplified picture and describe the aggregate

result abstractly in terms of units of flow as defined by

Kauzmann [31]. In Kauzmann’s definition, units of flow

are the ‘‘structures in a body whose motions past one

another make up the unit shear stress process... the unit

of flow may be a single molecule or a group of many

molecules, and the barrier may arise directly from the
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repulsions between a few molecules or from some

more complicated mechanism.’’ The key consideration,

however, in the present case, that allows us to go fur-

ther is the inverse dependence of the flow unit ‘‘vol-

ume’’ on the thermal component of stress.

Here we consider an areal density of units of flow, q,

which are presumably somewhat analogous to dislo-

cations in crystalline materials—line defects which

form the boundaries between slipped and unslipped

regions of material. Gilman [32] was a pioneer in

applying dislocation theory to amorphous materials

and the need to replace the constant Burgers dis-

placement in crystalline materials with the average of a

fluctuating Burgers displacement in the amorphous

material.

Extending such analogy further, we will assume that,

at low temperatures, in the absence of thermal fluctu-

ations, the flow stress is proportional to the square root

of q

r̂ ¼ â
ffiffiffi
q
p ð16Þ

where â is a constant. In crystalline materials, Eq. 16

results from the assumption that the force between

flow units (dislocations or otherwise) is inversely pro-

portional to the distance between them which, in turn,

is a consequence of the elastic stress field resulting

from the distortion produced by the flow unit.

Following Bergstrom’s analysis for dislocations in

iron [33], divide the flow unit density into a mobile flow

unit density qm and an immobile flow unit density qi

and assume that the mobile flow unit density is con-

stant. Then the total flow unit density may be related to

the plastic strain by the differential equation

dq
de
¼ 1

bk
� xq ð17Þ

where b is the average displacement produced by a

flow unit, k is the mean free path for immobilization of

flow units, and x is the rate for mobilization of flow

units. We allow x to be negative, this term then also

contributing to the immobilization of flow units. If b, k,

and x are constant, the equation is easily solved and

the cold flow stress becomes

r̂ ¼ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�xeÞ=x

p
: ð18Þ

Note that ec ¼ 1
jxj is a characteristic strain at which

significant deviation from a parabolic stress/strain

relation occurs. At temperatures above zero, this cold

flow stress is reduced by the thermal activation factor

e�aðp;_eÞT :

Total viscoplastic component of deformation

The resulting viscoplastic component of the deforma-

tion is described by the equation

r ¼ Be�bT þ B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�xeÞ=x

p
e�aT ð19Þ

where

b ¼ b0 � b1 ln _e
a ¼ a0 � a1 ln _e

ð20Þ

and, neglecting their potential pressure dependence,

b0, b1, a0, a1 are constants. From the experimental data

for PTFE, x depends approximately linearly on the

pressure and logarithmically on the strain rate, so we

choose

x ¼ xa þ xb ln _eþ xpp ð21Þ

where xa, xb, xp are constants. The form of the

pressure dependence for the coefficients B and B0

follows the result of Argon [34] who derived the

expression

s ¼ ðaþ cpÞ6=5 ð22Þ

for the low temperature shear yield stress of glassy

polymers as a function of pressure. Argon’s model is

based on the thermally activated production of pair of

kinks in the collection of interpenetrating smooth

chain molecules comprising the polymer. Thus, we

choose

B ¼ Bpað1þ BpbpÞBpn

B0 ¼ B0pað1þ B0pbpÞB0pn
ð23Þ

where the quantities Bpa, Bpb, Bpn, B0pa, B0pb, B0pn are

constants.

Polymer constitutive equation: viscoelastic component

A Maxwell–Weichert model is used to describe the

initial viscoelastic stress. This model is placed in ser-

ies with the non-linear dashpot described by Eq. 19

above as illustrated in Fig. 2. The total deforma-

tion rate is divided into viscoelastic and viscoplastic

parts

_eij ¼ _eðeÞij þ _eðpÞij ð24Þ

and the viscoelastic deformation rate has an elastic and

a viscous component

4566 J Mater Sci (2007) 42:4562–4574
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_eðeÞij ¼ _eðkÞðeÞij þ _eðkÞðvÞij ð25Þ

where _eij; _e
ðkÞðeÞ
ij ; _eðkÞðvÞij ; _eðpÞij are the total deformation

rate, the k’th component elastic deformation rate, the

k’th component viscous deformation rate, and the vi-

scoplastic deformation rate, respectively.

The viscoelastic part is described by the set of

equations

_r0ðkÞij

2Gk
þ

r0ðkÞij

gk

¼ ð_e0ij � _eðpÞij Þ; k ¼ 1; . . . ; n ð26Þ

for the stress deviators for the k’th Maxwell

component, where Gk is the shear modulus and gk is

the viscosity for the k’th component. The primes

indicate stress or deformation rate deviators. The total

stress is the sum of the individual Maxwell component

stresses

r0ij ¼
Xn

k¼1

r
0ðkÞ
ij : ð27Þ

For many polymers, the bulk response is non-line-

arly elastic with neglible viscosity. In this case, the

trace of the total stress and deformation rates are

related by

_rii ¼ 3KðeiiÞ_eii ð28Þ

where K is a volume and temperature dependent bulk

modulus.

Finally, the total stress deviators are related to the

viscoplastic deformation rate by the equation

r0ij ¼
2

3
rpð_eðpÞ; eðpÞÞ

_eðpÞij

_eðpÞ
ð29Þ

where rpð_eðpÞ; eðpÞÞ is the function in Eq. 19 relating

stress to strain rate and strain, and

_eðpÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_eðpÞij _eðpÞij

r
ð30Þ

is the effective deformation rate. While Eq. 29 looks

deceptively like Mises plasticity, the diameter of the

yield surface shrinks to zero as the plastic deformation

rate goes to zero, so that it is possible to have a finite

plastic deformation rate for arbitrarily small stresses.

The viscosities, or equivalently, the relaxation times,

sk ¼ gk=2Gk; have a temperature and pressure depen-

dence given by

sk ¼ s0keHk=T ð31Þ

where the activation energies (in units of temperature)

are

Hk ¼ H0k þApkp: ð32Þ

For the case of uniaxial stress, the equations reduce

to the system of equations

_rðkÞ11 þ
rðkÞ11

sk
¼ 3GkK

K þ 1
3 G0

ð_e11 � _eðpÞ11 Þ

þ Gk

3ðK þ 1
3 G0Þ

Xn

k0¼1

rðk
0Þ

11

sk0
; k ¼ 1; . . . ; n ð33Þ

and

r11 ¼ rp _eðpÞ; eðpÞ
� � _eðpÞ11

j_eðpÞ11 j
ð34Þ

where G0 is the unrelaxed modulus, G0 ¼
Pn

k¼1 Gk:

Application to polytetrafluoroethylene

Structure of PTFE

Despite the advantage of rather uniform plastic yield-

ing behavior, PTFE has an unusually complicated

phase diagram with four crystalline forms and a liquid

phase [35]. The polymer chains are linear, composed of

–CF2– groups, with the carbon atoms arranged in a zig-

zag pattern with a periodic 180� twist [36]. The chains

pack in an approximately hexagonal arrangement. At
Fig. 2 Maxwell–Weichert linear viscoelasticity plus thermal
activation non-linear viscoplasticity
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atmospheric pressure, below 293 K, the twist period

comprises 13 CF2 groups, and the crystal structure is

triclinic [37] (Phase II) with unit cell parameters

a = 0.561 nm and c (twist period along polymer

chain) = 1.68 nm. At atmospheric pressure, at tem-

peratures greater than 293 K (20 �C), the twist period

increases to 15 CF2 groups, and a partially disordered

hexagonal crystal is formed (Phase IV) with unit cell

parameters a = 0.566 nm and c = 1.95 nm. Above

303 K (30 �C) the crystal is pseudo-hexagonal with a

random twist period (Phase I) and a crystalline melting

point [38, 39] of 600 K. At pressures above about 450–

700 MPa, the periodic twist disappears and the chains

assume a planar zig-zag form [40] arranged in a

monoclinic crystal structure (Phase III). Phases I, II,

and III meet at a triple point at approximately 343 K

(70 �C) and 450 MPa. The amorphous part of the

material has several glass-like transition temperatures,

designated a, b, and c by McCrum [41, 42]. The c
transition is variously quoted as being somewhere in

the range of 130–250 K. Lau et al. [43] review the

published results and conclude that the transition is

very broad, covering the range 160–240 K with the

midpoint at about 200 K. The highest temperature

amorphous transition, designated a, occurs at about

400 K and the b transition occurs at about 320 K.

Most of the experimental constitutive data for PTFE

used for the analysis in this work lies in the tempera-

ture and pressure range in which the crystal is triclinic

and the amorphous material is above the c transition

and below the b transition. It is not known, therefore,

how accurately the constitutive equation will predict

the mechanical behavior of PTFE in other regions of

the phase diagram. There is also insufficient experi-

mental data available to determine whether there is a

significant pressure dependence in the thermal activa-

tion coefficients a and b described in Eq. 20 above.

Data analysis: viscoplastic component

The parameters for use in the constitutive equation

were obtained by analyzing results reported by a

number of investigators: compressive split Hopkinson

pressure bar stress–strain curves at a number of strain-

rates reported by Walley and Field [44], a low tem-

perature (130 K) Hopkinson bar stress–strain curve

reported by Walley et al. [45], Hopkinson bar data at a

number of temperatures and strain-rates determined

by Gray [46], and tensile stress–strain data at various

superposed hydrostatic pressures reported by Sauer

and Pae [47]. The parameters derived from these data

are given in Table 1. A brief description of the analysis

leading to these parameters is given in Appendix A.

Data analysis: linear viscoelastic component

An eight component Maxwell–Weichert model was

used for the viscoelastic part, with the moduli, relaxa-

tion times, and activation energies, Gk; s0k;H0k;

respectively, chosen to give a reasonably good match to

the shear storage modulus and logarithmic decrement

versus temperature data at 1 Hz published by McCrum

[48] as shown in Figs. 3 and 4. As discussed above, this

type of model consideration is hoped to lead eventually

to a physical model description of the internal relaxa-

tion mechanisms. The storage modulus in the Max-

well–Weichert model is given by the expression

G0ðx;TÞ ¼
Xn

k¼1

Gk
½xskðTÞ�2

1þ ½xskðTÞ�2
ð35Þ

and the logarithmic decrement reported by McCrum is

d ¼ 1

2

G00ðx;TÞ
G0ðx;TÞ ð36Þ

where

G00ðx;TÞ ¼
Xn

k¼1

Gk
xskðTÞ

1þ ½xskðTÞ�2
ð37Þ

is the loss modulus. With eight components, the match

is good except at the highest temperatures near the

melting point.

For the purpose of the comparisons presented here,

it was assumed that PTFE can be treated as incom-

pressible, so that Eq. 33 simplifies considerably, and

the effective elastic (Young’s) moduli, Ek, are three

times the shear moduli, Gk. While some calculations

were performed using a temperature dependent bulk

modulus approximating that for PTFE, the results are

not significantly different and the precision of the data

does not warrant the slightly more accurate calcula-

tions.

Table 1 Parameters for the
viscoplastic deformation of
PTFE

b0 (K–1) 2.01 · 10–2

b 1 (K–1) 2.64 · 10–4

a 0 (K–1) 4.78 · 10–3

a 1 (K–1) 5.02 · 10–5

x a –3.6
x b –0.625
x p (MPa–1) –0.04
Bpa (MPa) 4016
Bpb 2.0 · 10–2

Bpn 0.714
B0pa (MPa) 72.4
B0pb 2.2 · 10–2

B0pn 0.5
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It is of interest to compare the elastic moduli cal-

culated with this model with independently measured

elastic moduli. Figure 5 shows the results calculated

with the parameters in Table 2 compared with bend

test data reported by Engeln et al. [49] on uniaxially

drawn specimens of 42% crystallinity PTFE. From

their description of the test, we conclude that they

effectively measured the 10 s creep compliance. In

Fig. 5, we have plotted the reciprocal of the calculated

10 s creep compliance to compare with the reported

bend test moduli. The agreement is reasonable, con-

sidering that the test data refers to a variety of drawn

specimens of lower crystallinity material than that for

which the model parameters were derived. Note that

the data clearly show the effect of the amorphous

transition at 200 K and the amorphous and crystalline

transitions at 300–320 K.

The creep compliance may be calculated in a num-

ber of ways, all of which are time consuming. The

direct method is integration of the differential equa-

tions under the constraint of constant total stress.

Another method is to calculate the stress relaxation

modulus for each temperature with the expression

ERðt;TÞ ¼
Xn

k¼1

Ek exp½�t=skðTÞ�: ð38Þ

and convert it to a creep compliance curve with the

numerical method of Hopkins and Hamming [50]. The

best method is to find the equivalent Kelvin–Voigt

model for each temperature that gives the parameters

for the expression
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Fig. 3 Fit of Maxwell–Weichert model with eight components to
storage shear modulus data of McCrum [48] for 64% crystallinity
PTFE at 1 Hz. The data cover the temperature range from 4.2 K
to the melting point at 600 K
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Fig. 4 Fit of Maxwell–Weichert model with eight components to
logarithmic decrement data for 64% PTFE at 1 Hz. The data of
McCrum [48] cover the temperature range from 4.2 K to the
melting point at 600 K

Table 2 Maxwell–Weichert parameters for the initial linear
viscoelastic deformation of PTFE

k Gk (MPa) s0k (s) H0k (K)

1 950 1.7 · 10–7 2,338
2 350 2.2 · 10–17 10,740
3 90 5.1 · 10–12 9,640
4 100 4.6 · 10–9 5,920
5 40 4.1 · 10–18 22,920
6 200 2.7 · 10–5 1,160
7 200 2.1 · 10–5 2,320
8 200 4.2 · 10–6 1,106
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Fig. 5 10 s stress relaxation modulus calculated with eight
component Maxwell–Weichert model compared to bend test
data reported by Engeln et al. [49] on drawn specimens of 42%
crystallinity PTFE
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Jðt;TÞ ¼ J0 þ
Xn

k¼1

JkðTÞ½1� expð�t=skðTÞÞ� þ
t

gðTÞ
ð39Þ

from which the creep compliance may be calculated.

After all is said and done, the calculations show that

the reciprocal of the 10 s creep compliance does not

differ significantly from the 10 s relaxation modulus,

given by Eq. 38.

In another comparison, shown in Fig. 6, we have

plotted the calculated stress relaxation modulus

versus time at 293 K and compared it with test data

published by Nagamatsu et al. [51]. They reduced

their data to a master curve at 293 K and that is

plotted in Fig. 6. Their master curve covers the range

from one second to 1014 s and there is reasonable

agreement between the calculation and the data in

the range between 1 and 100 s. The calculation does

not reproduce the test results for times greater than

100 s, but this is not of concern here, because we

only intend to describe the high rate, short time

behavior.

The viscoelastic pressure volume of activation Ap

was assumed to have the same value for each Maxwell

element. It was set at a value of 4.0 K/MPa so that the

calculated initial slope of the stress–strain curve would

match that of the data of Sauer and Pae at the highest

pressure (552 MPa) at which they measured the stress–

strain curve.

Complete constitutive equation for PTFE

With both the viscoplastic and viscoelastic components

of the constitutive equation, we are now able to inte-

grate the set of differential equations (31)–(34) to

construct the complete stress–strain relation. Fig-

ures 7–10 show the complete stress–strain curves cal-

culated with the parameters in Tables 1 and 2

compared to the reported experimental data.

In Fig. 7, the compressive Hopkinson bar data for

stress vs. strain at six strain rates ranging from 0.016 s–

1 to 22,600 s–1 reported by Walley and Field [44] are

compared to the results calculated with Eqs. 31–34.

The change in shape of the curves with strain rate is

well reproduced. Results over a range in temperature

and mostly at lower strain rates, that are of less

interest, were obtained by Rae et al. [52], and

including pressure-induced phase transformation at

higher temperatures and higher imposed strain rates

[53, 54], appear to be in line with the expectation from

those results shown here only at the higher strain

rates.

In Fig. 8, compressive Hopkinson bar data (at high

strain rate) for stress versus strain at seven tempera-

tures, as reported by Gray [55] are compared to the

results calculated with Eqs. 31–34. The calculated

stresses agree well with the observed stresses.

In Fig. 9, the compressive Hopkinson bar data for

stress vs. strain two temperatures, 130 K and 300 K,

reported by Walley et al. [45] are compared to the
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Fig. 6 Stress relaxation modulus at 293 K vs. time, calculated
with eight component Maxwell–Weichert model, compared to
master curve reported by Nagamatsu et al. [51]
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son pressure bar data reported by Walley and Field [44] for
PTFE
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results calculated with Eqs. 31–34. At 130 K, the cal-

culated stress is much higher than the observed stress.

Because 130 K is far below the c transition tempera-

ture, the material is very likely to be brittle, so that the

observed strength may have been compromised by

fracture of the material.

In Fig. 10, tensile stress–strain with superimposed

hydrostatic pressure data reported by Sauer and Pae

[47] are compared to results calculated with Eqs. 31–

34. The change of shape of the curves with pressure is

well reproduced.

Application to polymethylmethacrylate

The yield stress of polymethylmethacrylate

As discussed with respect to Fig. 1, the thermal acti-

vation model was applied to yield stress data obtained

by Bauwens-Crowet [3] for polymethylmethacrylate

(PMMA) at various temperatures and strain rates; and,

it was shown that a volume of activation inversely

proportional to the yield stress gave good agreement

between the calculated and measured yield stresses.

The key to obtaining good agreement between the

model and the experimental data is to account for the

dependence of the non-linear viscoplastic flow mech-

anisms on the small strain shear modulus which has a

strong variation with temperature [56].

In Fig. 11, Bauwens-Crowet’s data for the com-

pressive yield stress of PMMA divided by its shear

modulus is plotted as a function of the quantity

T lnð_e0=_eÞ ¼ G=k: With the correct choice of _e0; the

equality holds, the quantity is the activation energy in

degrees Kelvin, and the data in the plot should

coalesce into a single one-parameter curve, as it does in

the figure with the choice of _e0 ¼ 2� 107 s–1.

Furthermore, with the volume of activation being

inversely proportional to the effective shear stress, then

a curve in an ln (stress) plot should be a straight line with

slope �k=W0 and intercept ln (B/l). An inspection of

Fig. 11 shows this to be very closely the case, with

k=W0 ¼ 2:56� 10�4 K–1 and B/l = 0.454. These

parameters then give calculated values of yield stress

versus strain rate and temperature which match well

with Bauwens-Crowet’s data. Recently, Fleck et al. [15]

have employed the Bauwens-Crowet yield results

described with a ‘‘two-element Eyring equation’’ to

relate to the onset of PMMA fracturing behavior.
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The PMMA ductile–brittle transition

The yield stress results obtained in compression for

PMMA at different temperatures and strain rates may

be compared with predictions of a transition to brittle

fracturing when tested in tension. The pre-cracked

brittle fracture stress of PMMA, rc; is known to follow

the relation [57]

rc ¼ rt½s=ðcþ sÞ�1=2; ð40Þ

where rt is the crack-free tensile fracture stress and s is

the width of a zone of plastic yielding at the tip of a

crack of radius c. This relation is a very good approx-

imation to the more rigorous result of Bilby et al. [58].

From an analysis of the fracture stress data for PMMA

reported by Berry [59], rt is determined to be 82 MPa

and s is 0.068 mm.

A tensile ductile–brittle transition may be defined

for PMMA and related polymers by the condition

ryðT; _eÞ ¼ rcðT; _eÞ; ð41Þ

where at larger crack sizes rc is normally taken on a

fracture surface energy basis to be relatively indepen-

dent of temperature and strain rate. At smaller crack

sizes, a more significant temperature and strain rate

dependence may enter for rc: Equation 41 provides a

means of calculating the ductile–brittle transition tem-

perature as a function of strain rate, as illustrated in

Fig. 12. Thus, for example, for an intentional crack

radius of 1.0 mm, and strain rate of 0.001 s–1, brittle

tensile fracture should occur before yield at all temper-

atures less than 377 K, whereas for a smaller uninten-

tional crack radius of 0.04 mm, and strain rate of 1.0 s–1,

brittle fracture would occur at yield for T ~360 K, and

before yield at temperatures less than 360 K.

Conclusion

A constitutive equation has been developed that

describes reasonably well both the effective stress for

viscoplastic flow in PTFE in uniaxial dynamic tension

tests as a function of strain, strain rate, temperature,

and the pressure and the yield stress of PMMA as a

function of temperature and strain rate. A key element

of the analysis is employment of an inverse stress

dependence of the (shear) activation volume for ther-

mally activated flow units. The upward curvature of the

strain hardening curve for polymers is accounted for by

a pressure and strain rate dependent rate of immobi-

lization of flow units. The model does not describe long

term relaxation or creep effects. It should, due to the

inclusion of pressure dependence, predict the differ-

ence in stress between compressive and tensile loading.

For polymers that display a strain-softening after a

yield point, the yield term in the viscoplastic stress

equation (19) may be given a strain dependence using

the same analysis that was applied to the strain hard-

ening term.
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Appendix A: Obtaining parameters for the viscoplastic

element

Each stress–strain curve not already reported as true

stress-true strain is transformed to true stress-true

strain with the formulae

r ¼ Sð1þ eÞ
e ¼ lnð1þ eÞ ðA1Þ

where S and e are load and elongation, respectively,

and r and e are true stress and true strain, respectively.

While this transformation applies only if the flow is

volume conserving, the error in applying it to the entire

stress–strain curve is generally small. Then, for each

curve, a guess is made for the initial linear viscoelastic

modulus, and the elastic strain is subtracted from the

total strain to obtain the viscoplastic strain. Each true

stress–viscoplastic strain curve is then fitted to an

equation of the form

r ¼ r0 þK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�xeÞ=x

p
ðA2Þ

and r0 is obtained from the intercept (or extrapolated

intercept) with the r-axis at zero viscoplastic strain. K

and x could be obtained with a non-linear least squares

fit to the data, but a quicker and better result is ob-

tained simply by solving for K and x by taking two

points on the curve, one near the end, at large strain,

and one at half that strain.

To obtain B, b 0, and b 1, write

ln r0 ¼ ln B� b1T lnð_e0b=_eÞ ðA3Þ

where b0 ¼ b1 ln _e0b: Pick an _e0b; and plot ln r0 against

T lnð_e0b=_eÞ: With the best value of _e0b; all the data

points will lie on or close to a single straight line whose

slope is �b1 and intercept is ln B. Similarly, to obtain

B0, a 0, and a 1, write

ln K ¼ ln B0 � a1T lnð_e0a=_eÞ: ðA4Þ

Finally, the dependence of x on strain rate and

pressure may be determined by a linear regression and

the pressure dependence of B and B0 may be deter-

mined by a series of linear regressions with differing

trial exponents.
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